

A novel mechanistic model for CD4 lymphocyte reconstitution following paediatric haematopoietic stem cell transplantation

Rollo L Hoare^{1,2}

Robin Callard^{1,2}, Paul Veys^{2,3}, Nigel Klein^{2,3}, Joseph F Standing^{1,2,3}

 University College London, CoMPLEX: Centre for Mathematics and Physics in the Life Sciences and Experimental Biology
 University College London, Institute of Child Health

3. Great Ormond Street Hospital NHS Foundation Trust

PAGE Meeting 2013

Contents

- 1. Introduction
- 2. Modelling
- 3. Results
- 4. Conclusions

Haematopoietic stem cell transplants (HSCT)

- Treatment for disorders including immunodeficiencies, leukaemias and lymphomas
- Before HSCT patient given conditioning for immune system ablation
 - Prevent graft rejection
 - Lower chances of graft-versus-host disease
 - Lower chances of relapse
- This leaves the patient severely immunocompromised.

Why build a new model for CD4 T cells?

Table III. Median times to lymphocyte subset recoveries in patients after UCBT or UBMT (non parametric test of Mann-Whitney) (bold value: P < 0.05).

	Total $n = 226$			UCBT $n = 112$			UBMT $n = 114$			
	Number of patients at risk	Median time (months)	Range (months)	Number of patients at risk	Median time (months)	Range (months)	Number of patients at risk	Median time (months)	Range (months)	P value
$CD3 > 0.5 \times 10^{9}/l$	161	5.6	0.5-62.3	72	6.3	1.5-55.3	89	3.2	0.5-62.3	0.008
$CD3 > 1.5 \times 10^{9}/l$	118	9.9	1.1-66.2	55	10.0	1.7-55.3	63	9.3	1.1-66.2	0.940
$CD4 > 0.2 \times 10^{9}/l$	161	5.1	0.5-51.4	72	5.0	1.5-23.6	89	6.0	0.5-51.4	0.636
$CD4 > 0.5 \times 10^{9}/l$	135	10·0	1.1-55.3	61	9.3	2.6-22.3	74	12.3	1.1-37.2	0.003
$CD8 > 0.25 \times 10^{9}/l$	161	4 · 4	0.5-74.7	70	7.7	0.9-52.3	91	2.8	0.5-74.7	<0.001
$CD19 > 0.2 \times 10^{9}/l$	164	4 ·2	0.7-51.4	78	3.2	0.7-19.1	86	6.4	1.6-51.4	<0.001
$NK > 0.1 \times 10^9/l$	185	1.3	0.6-62.3	86	1.0	0.9-4.3	99	1.4	0.6-62.3	0.167

Charrier *et al.* **2013** Bone Marrow Transplant 48 376-82

- Standard methods to assess immune reconstitution are simplistic
- Mechanistic modelling can improve our understanding of reconstitution
 - It allows a more meaningful covariate analysis
 - Possible to analyse noisy and uneven data
- CD4 reconstitution over time-scale of months and years
 - Present models of reconstitution cannot be applied to CD4 cells

The data

- Routine clinical data from children having HSCTs at Great Ormond Street Hospital for Children
- CD4 T cell concentrations for up to 7 years post HSCT
- Converted to total body CD4 cell counts
- 288 patients, 3019 measurements.
- Median age at HSCT 37 months, (16 days to 16 years)
- Highly heterogeneous data

Introduction

6 -

Contents

1. Introduction

2. Modelling

- 3. Results
- 4. Conclusions

Modelling

The Model

• Giving the following differential equation:

$$\frac{dY}{dt} = \lambda - D \cdot Y + P \cdot Y$$
$$\frac{dY}{dt} = \lambda - \delta \cdot Y$$

Model has 3 parameters: λ , thymic output (cells per day) δ , net loss of cells (per day) Y_0 , initial number of cells in the body

 Functional forms for the parameters are chosen to represent the underlying biology

CD4 T cell numbers and age

• Total body CD4 T cell numbers change across childhood^{1,2}

Modelling

Accounting for age changes

• A functional form for thymic output³ with age in days, τ :

$$\lambda(\tau) = \theta_{\lambda} \times \frac{y(\tau)v(\tau)V(\tau)\gamma}{0.02\eta(c-\gamma)} \quad \text{where:}$$

$$y(\tau) = 0.02e^{-0.00027\tau}$$
$$v(\tau) = 924 + 2354e^{-0.001012\tau}$$

- $y(\tau)$ the proportion of cells expressing Ki67 with age
- $v(\tau)$ the CD4 concentration with age
- V(τ) the standard blood volume with age
- η = 0.52 the duration of Ki67 expression
- c = 0.25 and $\gamma = 0.08$ constants related to CD4 cell TREC content
- The corresponding functional form for net loss with age: $\overline{\delta(\tau) = \theta_{\delta} \times 0.9 \, y(\tau)}$
- θ_{λ} and θ_{δ} are parameters to be estimated.

³Bains *et al.* **2009** J Immunol 183(7) 4329–36.

٠

Thymic effects

• TREC analysis suggests thymic production is impaired post HSCT⁴.

 $\theta_{\lambda-half}$ and $\theta_{\lambda-rate}$ are new parameters to be estimated

⁴Fallen et al. 2003 Bone Marrow Transplant 32(10) 1001-14

Competition effects

 Competition for homeostatic signals may affect proliferation and loss rates for CD4 cells⁴:

• $\theta_{\delta-comp}$ is a new parameter to be estimated and gives the number of cells at which Δ_{comp} will reach 0.63.

Modelling

Full model and parameter values

$$\frac{dY(t,\tau)}{dt} = \lambda(t,\tau) - \delta(\tau,Y) \cdot Y(t,\tau) \qquad \begin{bmatrix} \text{Time} = t \\ \text{Age} = \tau \end{bmatrix}$$

$$\lambda(t,\tau) = \theta_{\lambda} \times \frac{y(\tau)v(\tau)V(\tau)}{0.0221} \times \frac{1 - \exp\left[-\frac{t}{\theta_{\lambda-half}}\right]}{1 + \exp\left[\theta_{\lambda-rate}\left(1 - \frac{t}{\theta_{\lambda-half}}\right)\right]}$$

$$\delta(\tau,X) = \theta_{\delta} \times 0.9 \times y(\tau) \times \left(1 - \exp\left[-\frac{Y(t,\tau)}{\theta_{\delta-comp}}\right]\right)$$
Where: $y(\tau) = 0.02e^{-0.0027\tau}$
 $v(\tau) = 924 + 2354e^{-0.001012\tau}$

The patient-specific random effects are defined as:

$$\begin{array}{ll} I\theta_{\lambda} = \theta_{\lambda} \times \exp(\eta_{\delta}) \\ I\theta_{\delta} = \theta_{\delta} \times \exp(\eta_{\lambda}) \\ IY_{0} = Y_{0} \times \exp(\eta_{Y_{0}}) \end{array} & \text{with:} & \text{variance}(\eta_{\delta}) = \Omega_{\delta} \\ \text{variance}(\eta_{Y_{0}}) = \Omega_{Y_{0}} \end{array}$$

And proportional residual variability with variance σ .

Parameter Values:

$ heta_{\lambda}$ (10^6 cells/day)	0.518
$oldsymbol{ heta}_{\delta}$ (per day)	0.659
Y_0 (x10^6 cells)	6983
$ heta_{\lambda-half}$	225
$ heta_{\lambda-rate}$	2.78
$ heta_{\overline{o} ext{-comp}}$ (Fixed)	60000
Ω _λ	4.72
$\Omega_{\bar{o}}$	5.76
$\Omega_{\lambda, \overline{\delta}}$	7.97
Ω _{Yo}	2.46
σ	0.201

Contents

- 1. Introduction
- 2. Modelling
- 3. Results
- 4. Conclusions

Goodness of fit plots

Observed Vs Individual Prediction

Observed Vs Population Prediction

CWRES Vs Population Prediction

CWRES Vs Time

Individual Prediction Vs Time

Population Prediction Vs Time

Comparison of Individual Prediction and Observed Vs Age

Results

Results

Model compared with healthy child

• The modelled population average reconstitution of a child with age having an HSCT at various ages against the expected progression of a health child.

Contents

- 1. Introduction
- 2. Modelling
- 3. Results
- 4. Conclusions

Conclusions

- A novel mechanistic model for the immune reconstitution of CD4 cells following HSCTs in children has been developed.
- The model fundamentally represents homeostatic mechanisms for CD4 cells in the immune system
- It brings together multiple ideas about reconstitution in children:
 - The changes in the thymus with age,
 - Reduced thymic function in the period after an HSCT,
 - Competition for homeostatic signals by CD4 cells in the body.
- Early covariate analysis implies:
 - Alemtuzumab and anti-thymocyte globulin both reduce the number of CD4 T cells immediately after the HSCT
 - Having no conditioning implied decreased thymic output after HSCT.

Conclusions

Further Work

- We would like to apply the model to CD8 reconstitution.
 - The differences and similarities between CD4 and CD8 reconstitution will give more information for covariate analysis.

Time after HSCT in years

• Once we have a final model with covariates included, we hope to be able to predict immune reconstitution given early data.

Acknowledgements

UCL Institute of Child Health

Robin Callard Joseph Standing Paul Veys Joanna Lewis Nigel Klein

UCL CoMPLEX: Centre for Mathematics and Physics in the Life Sciences and Experimental Biology

London Pharmacometrics Interest Group

Standard Errors on Parameters (Bootstrap)

Parameter	Parameter Estimate	Bootstrap Median	Bootstrap 95% Confidence Interval
$oldsymbol{ heta}_{\lambda}$ (10^6 cells/day)	0.518	0.518	0.356 - 0.685
$oldsymbol{ heta}_{\delta}$ (per day)	0.659	0.659	0.450 - 0.902
Y ₀ (x10^6 cells)	6983	6941	4683 - 7368
$ heta_{\lambda-half}$	225	225	185 - 267
$\theta_{\lambda-rate}$	2.78	2.78	2.20 - 3.36
$\theta_{\delta-comp}$ (Fixed)	60000	60000	60000 - 60000
Ω _λ	4.72	4.69	2.99 - 5.05
Ω_{δ}	5.76	5.63	2.96 - 5.99
$\Omega_{\lambda,\delta}$	7.97	7.88	3.43 - 8.73
Ω _{γo}	2.46	2.46	1.84 - 3.23
σ	0.201	0.201	0.179 - 0.223

UC 4e+05 -3e+05 -Total Body CD4 Count x10^6 2e+05 -1e+05 -0e+00 -100 1000 10

Time after HSCT in days