A novel mechanistic model for CD4 lymphocyte reconstitution following paediatric haematopoietic stem cell transplantation

Rollo L Hoare ${ }^{1,2}$
Robin Callard ${ }^{1,2,}$, Paul Veys ${ }^{2,3}$, Nigel Klein ${ }^{2,3}$, Joseph F Standing ${ }^{1,2,3}$

1. University College London, CoMPLEX: Centre for Mathematics and Physics in the Life Sciences and Experimental Biology
2. University College London, Institute of Child Health
3. Great Ormond Street Hospital NHS Foundation Trust

PAGE Meeting 2013

Contents

1. Introduction
2. Modelling
3. Results
4. Conclusions

Haematopoietic stem cell transplants (HSCT)

- Treatment for disorders including immunodeficiencies, leukaemias and lymphomas
- Before HSCT patient given conditioning for immune system ablation
- Prevent graft rejection
- Lower chances of graft-versus-host disease
- Lower chances of relapse
- This leaves the patient severely immunocompromised.

Introduction

Introduction

Why build a new model for CD4 T cells?

Table III. Median times to lymphocyte subset recoveries in patients after UCBT or UBMT (non parametric test of Mann-Whitney) (bold value: $P<0.05$).

	Total $n=226$			UCBT $n=112$			UBMT $n=114$			P value
	Number of patients at risk	Median time (months)	Range (months)	Number of patients at risk	Median time (months)	Range (months)	Number of patients at risk	Median time (months)	Range (months)	
CD3 $>0.5 \times 10^{9} / 1$	161	$5 \cdot 6$	0.5-62.3	72	$6 \cdot 3$	1.5-55.3	89	$3 \cdot 2$	0.5-62.3	0.008
CD3 $>1.5 \times 10^{9} / 1$	118	9.9	1-1-66.2	55	$10 \cdot 0$	1.7-55.3	63	$9 \cdot 3$	1-1-66.2	0.940
$\mathrm{CD} 4>0.2 \times 10^{9} / 1$	161	$5 \cdot 1$	0.5-51.4	72	$5 \cdot 0$	1.5-23.6	89	$6 \cdot 0$	0.5-51.4	0.636
$\mathrm{CD} 4>0.5 \times 10^{9} / 1$	135	10.0	1-1-55.3	61	$9 \cdot 3$	2.6-55.3	74	$12 \cdot 3$	1-1-37.2	0.003
CD8 $>0.25 \times 10^{9} / 1$	161	$4 \cdot 4$	0.5-74.7	70	7.7	0.9-55-3	91	2.8	0.5-74.7	<0.001
CD19 $>0.2 \times 10^{9} / 1$	164	4.2	0.7-51.4	78	$3 \cdot 2$	0.7-19.1	86	$6 \cdot 4$	1.6-51.4	<0.001
$\mathrm{NK}>0.1 \times 10^{9} / \mathrm{l}$	185	$1 \cdot 3$	0.6-62.3	86	1.0	0.9-4.3	99	$1 \cdot 4$	0.6-62.3	0.167

Renard et al. 2010 Brit J Haematol 152 322-30

- Standard methods to assess immune reconstitution are simplistic
- Mechanistic modelling can improve our understanding of reconstitution
$>$ It allows a more meaningful covariate analysis
$>$ Possible to analyse noisy and uneven data
- CD4 reconstitution over time-scale of months and years
> Present models of reconstitution cannot be applied to CD4 cells

The data

- Routine clinical data from children having HSCTs at Great Ormond Street Hospital for Children
- CD4 T cell concentrations for up to 7 years post HSCT
- Converted to total body CD4 cell counts
- 288 patients, 3019 measurements.
- Median age at HSCT 37 months, (16 days to 16 years)
- Highly heterogeneous data

Introduction

 E1SCl
$4 e+05$ $-$

IOCL

Contents

1. Introduction
2. Modelling
3. Results
4. Conclusions

Modelling

The Model

- Giving the following differential equation:

$$
\begin{aligned}
& \frac{d Y}{d t}=\lambda-D \cdot Y+P \cdot Y \\
& \frac{d Y}{d t}=\lambda-\delta \cdot Y
\end{aligned}
$$

Model has 3 parameters:
λ, thymic output (cells per day)
δ, net loss of cells (per day)
Y_{0}, initial number of cells in the body

- Functional forms for the parameters are chosen to represent the underlying biology

Modelling

CD4 T cell numbers and age

- Total body CD4 T cell numbers change across childhood ${ }^{1,2}$

Modelling

Accounting for age changes

- A functional form for thymic output ${ }^{3}$ with age in days, τ :

$$
\lambda(\tau)=\theta_{\lambda} \times \frac{y(\tau) v(\tau) V(\tau) \gamma}{0.02 \eta(c-\gamma)} \text { where: } \begin{aligned}
& y(\tau)=0.02 e^{-0.0027 \tau} \\
& v(\tau)=924+2354 e^{-0.0001012 \tau}
\end{aligned}
$$

- $y(\tau)$ the proportion of cells expressing Ki67 with age
- $v(\tau)$ the CD4 concentration with age
- $V(\tau)$ the standard blood volume with age
- $\quad \eta=0.52$ the duration of Ki67 expression
- $c=0.25$ and $\gamma=0.08$ constants related to CD4 cell TREC content
- The corresponding functional form for net loss with age:

$$
\delta(\tau)=\theta_{\delta} \times 0.9 y(\tau)
$$

- θ_{λ} and θ_{δ} are parameters to be estimated.

Modelling

Thymic effects

- TREC analysis suggests thymic production is impaired post HSCT ${ }^{4}$.

- $\theta_{\lambda \text {-half }}$ and $\theta_{\lambda \text {-rate }}$ are new parameters to be estimated

Modelling

Competition effects

- Competition for homeostatic signals may affect proliferation and loss rates for CD4 cells ${ }^{4}$:

- $\theta_{\delta-\text { comp }}$ is a new parameter to be estimated and gives the number of cells at which $\Delta_{\text {comp }}$ will reach 0.63 .

Modelling

Full model and parameter values

$$
\begin{aligned}
& \frac{d Y(t, \tau)}{d t}=\lambda(t, \tau)-\delta(\tau, Y) \cdot Y(t, \tau) \quad \begin{array}{c}
\text { Time }=t \\
\text { Age }=\tau
\end{array} \\
& \lambda(t, \tau)=\theta_{\lambda} \times \frac{y(\tau) v(\tau) V(\tau))}{0.0221} \times \frac{1-\exp \left[-t / \theta_{\lambda-\text {-alf }}\right]}{1+\exp \left[\theta_{\lambda-\text { rate }}\left(1-t / \theta_{\lambda-\text {-alf }}\right)\right]} \\
& \delta(\tau, X)=\theta_{\delta} \times 0.9 \times y(\tau) \times\left(1-\exp \left[-Y(t, \tau) / \theta_{\delta-\text { comp }}\right]\right) \\
& \text { Where: } \quad y(\tau)=0.02 e^{-0.00027 \tau} \\
& \\
& \quad v(\tau)=924+2354 e^{-0.001012 \tau}
\end{aligned}
$$

The patient-specific random effects are defined as:

$$
\begin{aligned}
& I \theta_{\lambda}=\theta_{\lambda} \times \exp \left(\eta_{\delta}\right) \\
& I \theta_{\delta}=\theta_{\delta} \times \exp \left(\eta_{\lambda}\right) \\
& I Y_{0}=Y_{0} \times \exp \left(\eta_{Y o}\right)
\end{aligned} \quad \text { with: } \quad \begin{aligned}
& \text { variance }\left(\eta_{\lambda}\right)=\Omega_{\lambda} \\
& \text { variance }\left(\eta_{\delta}\right)=\Omega_{\delta} \\
& \text { variance }\left(\eta_{Y o}\right)=\Omega_{Y o}
\end{aligned}
$$

Parameter Values:

θ_{λ} (10^6 cells/day)	0.518
θ_{δ} (per day)	0.659
$Y_{0 \text { (} \times 10^{\wedge} 6 \text { cells) }}$	6983
$\theta_{\lambda \text {-half }}$	225
$\theta_{\lambda-\text { rate }}$	2.78
$\theta_{\delta-\text { comp }}$ (Fixed)	60000
Ω_{λ}	4.72
Ω_{δ}	5.76
$\Omega_{\lambda, \delta}$	7.97
$\Omega_{Y 0}$	2.46
σ	0.201

And proportional residual variability with variance σ.

今UCI

Contents

1. Introduction
2. Modelling
3. Results
4. Conclusions

Results

Goodness of fit plots

Observed Vs Individual Prediction

Log Individual Prediction CD4 Cells

Observed Vs Population Prediction

CWRES Vs Population Prediction

Log Total body CD4 cells
CWRES Vs Time

Individual Prediction Vs Time

Population Prediction Vs Time

Results

Comparison of Individual Prediction and Observed Vs Age

Results

Results

Model compared with healthy child

- The modelled population average reconstitution of a child with age having an HSCT at various ages against the expected progression of a health child.

IICI

Contents

1. Introduction
2. Modelling
3. Results
4. Conclusions

Conclusions

Conclusions

- A novel mechanistic model for the immune reconstitution of CD4 cells following HSCTs in children has been developed.
- The model fundamentally represents homeostatic mechanisms for CD4 cells in the immune system
- It brings together multiple ideas about reconstitution in children:
- The changes in the thymus with age,
- Reduced thymic function in the period after an HSCT,
- Competition for homeostatic signals by CD4 cells in the body.
- Early covariate analysis implies:
- Alemtuzumab and anti-thymocyte globulin both reduce the number of CD4 T cells immediately after the HSCT
- Having no conditioning implied decreased thymic output after HSCT.

Conclusions

Further Work

- We would like to apply the model to CD8 reconstitution.
- The differences and similarities between CD4 and CD8 reconstitution will give more information for covariate analysis.

Time after HSCT in years

- Once we have a final model with covariates included, we hope to be able to predict immune reconstitution given early data.

Acknowledgements

UCL Institute of Child Health

Robin Callard Joseph Standing
Paul Veys
Joanna Lewis
Nigel Klein
UCL CoMPLEX: Centre for Mathematics and Physics in the Life Sciences and Experimental Biology

London Pharmacometrics Interest Group

Standard Errors on Parameters (Bootstrap)

Parameter	Parameter Estimate	Bootstrap Median	Bootstrap 95\% Confidence Interval
θ_{λ} (10^6 cells/day)	0.518	0.518	$0.356-0.685$
θ_{δ} (per day)	0.659	0.659	$0.450-0.902$
$Y_{0 \text { (x10^6 cells) }}$	6983	6941	$4683-7368$
$\theta_{\lambda \text {-half }}$	225	225	$185-267$
$\theta_{\lambda \text {-rate }}$	2.78	2.78	$2.20-3.36$
$\theta_{\delta \text {-comp }}$ (Fixed)	60000	60000	$60000-60000$
Ω_{λ}	4.72	4.69	$2.99-5.05$
Ω_{δ}	5.76	5.63	$2.96-5.99$
$\Omega_{\lambda, \delta}$	7.97	7.88	$3.43-8.73$
$\Omega_{Y 0}$	2.46	2.46	$1.84-3.23$
σ	0.201	0.201	$0.179-0.223$

